Encapsulated
 Weldable Strain Gages

Static/Dynamic Strain Measurement

$$
950^{\circ} \mathrm{C}
$$

KYOWA Encapsulated

Contents

Types and Typical Applications 1
Features of High-temperature Models 2
Temperature Compensation Method and Bridge Circuit (KHCX, KHCR, KHCS, KHCM, KHC) 3
Features of Normal-temperature Model 4
High-temperature Encapsulated Weldable Strain Gages
KHCX 5
KHCV 6
KHCR 7
KHCS 8
KHCM 9
KHC 10
Normal-temperature Encapsulated Weldable Waterproof Foil Strain Gage KCW 12
Optional Accessories
Bridge Boxes DB-120A/L 13
Bridge Adapters 13
Compression Fitting 14
MI Cable Length Codes and Optional Accessories 14
Compact Spot Welder for Encapsulated Weldable Strain Gages 15
To Ensure Safe Usage of Encapsulated Weldable Strain Gages 16

Weldable Strain Gages

KYOWA encapsulated weldable strain gages are hermetically sealed. They consist of a sensing part and a cable to transmit output signals from the sensing part. The sensing part is composed of a metal tube and a flange. The highly heatresistant metal tube has strain-gage element(s) and insulation material sealed in. The flange is spot-welded to the measuring point.
The cable is a mineral-insulated metal sheathed cable (MI cable) filled with heat-resistant insulating powder in which the leadwires are embedded. This structure enables these strain gages to measure strain under harsh environments affected by high temperature, high pressure or high humidity. High-temperature models can be applied to strain measurement in fields including nuclear/thermal power generation, automobiles and aircraft. The normal-temperature model features waterproof construction and long-term stability, and thus is suitable for outdoor strain measurement in the automobile, civil engineering, architectural and many other fields.

Types and Typical Applications

Type	Normal Temp.	High Temp.					
Model	KCW	KHC	KHCM	KHCS	KHCR	KHCV	KHCX
Measuring Strain	Static/Dynamic					Dynamic	Static/Dynamic
Max. Oprg. Temp.	$100^{\circ} \mathrm{C}$	\|500/550 ${ }^{\circ} \mathrm{C}$	$650^{\circ} \mathrm{C}$	$750^{\circ} \mathrm{C}$	$750^{\circ} \mathrm{C}$	$800^{\circ} \mathrm{C}$	$950^{\circ} \mathrm{C}$
Temp. Comp.	Yes					No	Yes

High-temperature
 Encapsulated Weldable Strain Gages
 Features

Hermetically sealed structure provides excellent environmental capability.

The gage element and leadwire cable (Ml cable) are covered with heat and corrosion resistant metal (Inconel 600, etc.) and integrated, enabling strain measurement at high temperatures or under high pressure, seawater or pure water.

Strain-gage element is made of heat-

 resistant special alloy.Minimal thermally-induced apparent strain ensures highly accurate measurement (KHCX, KHCR, KHCS, KHCM, KHC).
The half-bridge structure has a dummy gage for temperature compensation, and the applicable linear expansion coefficient can be selected according to the measuring object. Furthermore, the temperature compensation resistor compensates apparent strain initiated by the linear expansion coefficient of the leadwire cable. Together these features minimize thermally-induced apparent strain, enabling highly

Applicable linear expansion coefficients of 11,13 and $16 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ are available standard. (11 and $13 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ only for KHCX)
Models with other applicable linear expansion coefficients can be manufactured as desired by users. (Since the KHCV is designed for dynamic strain measurement only, it does not provide any temperature compensation.)

Substantial Test Data Sheet enables highly accurate strain measurement.

The Test Data Sheet accompanying each product describes temperature and zero (bridge balance) compensation resistance values. If the operating temperature range or the length of the heated portion of the Ml cables are different from the ones shown in the graph below, contact us about the details. The estimated thermally-induced apparent strain and the gage factor change will be provided together with the graph. (Gage factor change is only for the KHCV.)

Estimated Thermally-induced Apparent Strain and Gage Factor Change
With the KHCV, gage factor is improved by approximately 50% over our forerunner previous model.
This is realized through improvement of the spot-welding method and adoption of a low-resistance Ml cable. Also realized is the 120Ω gage resistance in 5 mm gage length.

Models with bridge adapter option cut down on labor time and increase reliability. The bridge adapter has the temperature compensation resistor wired (KHCX, KHCR, KHCS, KHCM, KHC). This not only elimi-nates the need for wiring the resistor to the bridge adapter but also facilitates connection to the measuring instrument.

Temperature Compensation Method and Bridge Circuit (KHCX, KHCR, KHCS, KHCM, KHC)

With foil strain gages, a half bridge configuration using active and dummy gage elements enables compensation of the output initiated by the temperature coefficient of the resistive material of the gage elements and the output initiated by the difference between the linear expansion coefficient of the gage elements and that of the measuring object.

Temperature Compensation Circuit for Foil Strain Gage
In the case of encapsulated weldable strain gages, the dummy gage element has no sensitivity, disabling compensation of the output initiated by the difference between the linear expansion coefficient of the gage and that of the measuring object. This results in apparent strain-output corresponding to the difference between the linear expansion coefficient of the active gage element and that of the measuring object. To compensate the apparent strain, external temperature compensation resistors (RTC) are inserted to the bridge circuit. Furthermore, external temperature compensation resistors (RLC) are inserted to the bridge circuit to reduce the apparent strain initiated by the heated MI cable. The bridge balance broken by these resistors is corrected by balance adjustment resistors (RBAL). Each product is delivered with all of these resistors featuring the optimum values for the user's operating temperature range.

Temperature Compensation Circuit of KHCX, KHCR, KHCS, KHCM and KHC

To facilitate configuration of the bridge circuit including these resistors, a bridge adapter is provided which will be pre-attached to the soft cable when delivered.

Normal-temperature Encapsulated Weldable Strain Gages

Features

Weldable type ensures easy installation in the field.

The spot-welding method facilitates installation of gages to the measuring point. The sensing part is covered with stainless steel and requires no additional installation work such as coating. The cableintegrated structure also ensures easy handling.

Outstanding waterproof construction and long-term stability

The normal-temperature model can endure water pressure of approximately 10 MPa for 24 hours. Thus, it can safely be used outdoors, underwater or in highly humid environments.

Affordable

When compared with high-temperature models, the normal-temperature model is economically priced.

Structure \& Circuit

SPECIFIGATIONS

Model
Gage type

Resistive element
Sensing part

Gage resistance
Leadwire cable

Max. operating temp.
Appl. lin. exp. coef.
Gage factor (sensing part only)

Thermally-induced app. strain
Temp. comp. range
Operating temp. range
Drift
Strain limit
Fatigue life
Max. allowable current
Min. mountable curvature radius

KHCX-10-120-G13-11 C2MV
KHCX-10-120-G13-13 C2MV
Uniaxial 2-element temperature-compensation type
Heat-resistant special alloy
Gage length: 10 mm
Flange: $3(\mathrm{~W}) \times 20(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
Sheath tube and flange: Inconel 600 (equivalent to JIS NCF600)
Approx. 120Ω
MI cable: Inconel 600 -sheathed 3-Ni-conductor cable, 1.6 mm diameter by approx. 2 m long (std.)
Soft cable: ETFE-coated 3-conductor shielded cable, 1.7 mm diameter by approx. 50 cm long
Approx. $950^{\circ} \mathrm{C}$
$11,13 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Approx. 1.7 at room temperature
Approx. 1.5 at $950^{\circ} \mathrm{C}$
The estimated curve is shown in the test data sheet.
25° to $950^{\circ} \mathrm{C}$
-196° to $950^{\circ} \mathrm{C}$
Within $\pm 20 \mu \mathrm{~m} / \mathrm{m} / \mathrm{h}\left(950^{\circ} \mathrm{C}\right)$
$\pm 10000 \mu \mathrm{~m} / \mathrm{m}$ at $950^{\circ} \mathrm{C}$
1×10^{6} times at $950^{\circ} \mathrm{C}$ (with strain level $\pm 100 \mu \mathrm{~m} / \mathrm{m}$)
50 mA
75 mm (20 mm if the flange is fabricated before delivery)

Standard Accessories

MI cable fixing metal belt (100 mm long, 2 pcs .)
Weld test metal piece (30 mm long, 2 pcs.)

- Test Data Sheet
- Instruction Manual

The following resistors are additionally provided for models with no bridge adapter.
Temperature-compensation resistor

- Bridge balance resistor

Optional Accessories

- Bridge adapter

Spot welder GW-3C (refer to page 15)
For bridge adapter, compression fitting and MI cable length, refer to pages 13 and 14.

Typical Applications

Grasping the physical properties of:
High-temperature gas turbine blades

- Aircraft jet engine turbines
- Incinerators and heat treat furnaces
- Petrochemical reactors
- Heat-resistant alloys, etc.
- Model with no bridge adapter is also available.

$$
\square \Omega
$$

Precautions

In the case of models with the bridge adapter pre-attached, leadwires of the bridge adapter can be connected directly to a static strain measuring instrument such as UCAM-60B, but the leadwires should be connected to a dynamic strain measuring instrument such as EDX-100A via an optional input cable.
Models with no bridge adapter pre-attached require an optional dedicated adapter.
Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

- Mount the sensing part carefully so that the part may not receive any unreasonable force or may not be bent locally.

It is recommended to use a measuring instrument of constant DC voltage application type such as UCAM-500B, CDV, etc.

Dynamic Strain Measurement Only High-temperature Encapsulated Weldable Strain Gages

- In the case of model with no bridge adapter

SPECIFICATIONS

Model	KHCV-5-120-G17 C2MV
Gage type	Uniaxial 1-element
Resistive element	Heat-resistant special alloy
Sensing part	Gage length: 5 mm
	Flange: $3(\mathrm{~W}) \times 10(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
	Sheath tube and flange: Inconel 600 (equivalent to JIS NCF600)
Gage resistance	Approx. 120Ω
Leadwire cable	Ml cable: Inconel 600 -sheathed 3-Ni-conductor cable, 1.0 mm diameter by approx. 2 m long (std.)
	Soft cable: ETFE-coated 3-conductor shielded cable, 1.7 mm diameter by approx. 50 cm long
Max. operating temp.	Approx. $800^{\circ} \mathrm{C}$ (dynamic strain)
Gage factor (sensing part only)	Approx. 1.5 at room temperature
Operating temp. range	25° to $800^{\circ} \mathrm{C}$
Strain limit	$\pm 10000 ~ \mu \mathrm{~m} / \mathrm{m}$ at $800^{\circ} \mathrm{C}$
Fatigue life	1×10^{6} times at $800^{\circ} \mathrm{C}$ (with strain level $\left.\pm 500 \mu \mathrm{~m} / \mathrm{m}\right)$
Max. allowable current	50 mA
Min. mountable curvature radius	15 mm

Standard Accessories

- MI cable fixing metal belt (100 mm long, 2 pcs.)

Weld test metal piece (30 mm long, 2 pcs.)

- Test Data Sheet
- Instruction Manual

The following are additionally provided for models with no bridge adapter.

- Capacitors (1, 2.2 and $10 \mu \mathrm{~F}$)
- Resistor (10 k Ω)

Optional Accessories

Bridge boxes DB-120A/L

- Bridge adapter
- Compression fitting
- Spot welder GW-3C (refer to page 15)

For bride box, bridge adapter, compression fitting and MI cable length, refer to pages 13 and 14.

Typical Applications

Grasping the physical properties of:

- High-temperature gas turbine blades
- Aircraft jet engine turbines
- Incinerators and heat treat furnaces
- Petrochemical reactors

Heat-resistant alloys, etc.

Precautions

The KHCV is dedicated to dynamic strain measurement. Do not use it for static strain measurement.

- Use the DC-excited CDV signal conditioner as the measuring instrument.

Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 12).

Static/Dynamic Strain Measurement High-temperature Encapsulated Weldable Strain Gages

SPECIFICATIONS

Model	KHCR-5-120-G16-11 C2MV for common steel
	KHCR-5-120-G16-13 C2MV for Inconel 600 (equivalent to JIS NCF600)
	KHCR-5-120-G16-16 C2MV for stainless steel
Gage type	Uniaxial 2-element temperature-compensation type
Resistive element	Heat-resistant special alloy
Sensing part	Gage length: 5 mm
	Flange: $3(\mathrm{~W}) \times 10(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
	Sheath tube and flange: Inconel 600 (equivalent to JIS NCF600)
Gage resistance	Approx. 120Ω
Leadwire cable	MI cable: Inconel 600-sheathed 3-Ni-conductor cable, 1.0 mm diameter by approx. 2 mlong (std.)
	Soft cable: ETFE-coated 3-conductor shielded cable, 1.7 mm diameter by approx. 50 cm long
Max. operating temp.	Approx. $750^{\circ} \mathrm{C}$
Appl. lin. exp. coef.	11, $13,16 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Gage factor (sensing part only)	Approx. 1.5 at room temperature
	Approx. 1.2 at $750^{\circ} \mathrm{C}$
Thermally-induced app. strain	The estimated curve is shown in the test data sheet.
Temp. comp. range	25° to $750^{\circ} \mathrm{C}$
Operating temp. range	25° to $750^{\circ} \mathrm{C}$
Drift	Within $\pm 20 \mu \mathrm{~m} / \mathrm{m} / \mathrm{h}\left(750^{\circ} \mathrm{C}\right)$
Strain limit	$\pm 10000 \mu \mathrm{~m} / \mathrm{m}$ at $750^{\circ} \mathrm{C}$
Fatigue life	1×10^{6} times at $750^{\circ} \mathrm{C}$ (with strain level $\pm 500 \mu \mathrm{~m} / \mathrm{m}$)
Max. allowable current	50 mA
Min. mountable curvature radius	15 mm

Standard Accessories

MI cable fixing metal belt (100 mm long, 2 pcs.)
Weld test metal piece (30 mm long, 2 pcs .)

- Test Data Sheet

Instruction Manual
The following resistors are additionally provided for models with no bridge adapter.
Temperature-compensation resistor
-Bridge balance resistor

Optional Accessories

Bridge adapter

Compression fitting
Spot welder GW-3C (refer to page 15)
For bridge box, bridge adapter, compression fitting and Ml cable length, refer to pages 13 and 14.

Typical Applications

Grasping the physical properties of:

- High-temperature gas turbine blades

Aircraft jet engine turbines
Incinerators and heat treat furnaces
Petrochemical reactors

- Heat-resistant alloys, etc.

Precautions

In the case of models with the bridge adapter pre-attached, leadwires of the bridge adapter can be connected directly to a static strain measuring instrument such as UCAM-60B, but the leadwires should be connected to a dynamic strain measuring instrument such as EDX-100A via an optional input cable.

- Models with no bridge adapter pre-attached require an optional dedicated adapter.

Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

KHCS

Static/Dynamic Strain Measurement High-temperature Encapsulated Weldable Strain Gages

SPECIFICATIONS

Model	KHCS-10-120-G12-11 C2MV for common steel
	KHCS-10-120-G12-13 C2MV for Inconel 600 (equivalent to JIS NCF600)
	KHCS-10-120-G12-16 C2MV for stainless steel
Gage type	Uniaxial 2-element temperature-compensation type
Resistive element	Heat-resistant special alloy
Sensing part	Gage length: 10 mm
	Flange: $3(\mathrm{~W}) \times 20(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
	Sheath tube and flange: Inconel 600 (equivalent to JIS NCF600)
Gage resistance	Approx. 120Ω
Leadwire cable	MI cable: Inconel 600-sheathed 3-Ni-conductor cable, 1.6 mm diameter by approx. 2 mlong (std.)
	Soft cable: ETFE-coated 3-conductor shielded cable, 1.7 mm diameter by approx. 50 cm long
Max. operating temp.	Approx. $750^{\circ} \mathrm{C}$ for both static and dynamic strains
Appl. lin. exp. coef.	11, $13,16 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ or user-specified
Gage factor (sensing part only)	Approx. 2.0 at room temperature
	Approx. 1.8 at $750^{\circ} \mathrm{C}$
Thermally-induced app. strain	The estimated curve is shown in the test data sheet.
Temp. comp. range	25° to $750^{\circ} \mathrm{C}$
Operating temp. range	-196° to $750^{\circ} \mathrm{C}$
Drift	Within $\pm 20 \mu \mathrm{~m} / \mathrm{m} / \mathrm{h}\left(750^{\circ} \mathrm{C}\right)$
Strain limit	$\pm 10000 \mu \mathrm{~m} / \mathrm{m}$ at $750^{\circ} \mathrm{C}$
Fatigue life	1×10^{6} times at $750^{\circ} \mathrm{C}$ (with strain level $\pm 500 \mu \mathrm{~m} / \mathrm{m}$)
Max. allowable current	50 mA
Min. mountable curvature radius	20 mm

Standard Accessories

Ml cable fixing metal belt (100 mm long, 2 pcs.)
Weld test metal piece (30 mm long, 2 pcs.)

- Test Data Sheet
- Instruction Manual

The following resistors are additionally provided for models with no bridge adapter.
Temperature-compensation resistor

- Bridge balance resistor

Optional Accessories

- Bridge adapter
- Compression fitting
- Spot welder GW-3C (refer to page 15)
- For bridge adapter, compression fitting and Ml cable length, refer to pages 13 and 14.

Typical Applications

Grasping the physical properties of: - High-temperature gas turbine blades

- Aircraft jet engine turbines
- Incinerators and heat treat furnaces
- Petrochemical reactors
- Heat-resistant alloys, etc.

Precautions

- In the case of models with the bridge adapter pre-attached, leadwires of the bridge adapter can be connected directly to a static strain measuring instrument such as UCAM-60B, but the leadwires should be connected to a dynamic strain measuring instrument such as EDX-100A via an optional input cable.
Models with no bridge adapter pre-attached require an optional dedicated adapter.
Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

Static/Dynamic Strain Measurement High-temperature Encapsulated Weldable Strain Gages

SPECIFICATIONS

Model for common steel
for Inconel 600
for stainless steel
Gage type
Resistive element
Sensing part Gage length

Gage resistance
Leadwire cable MI cable

Soft cable
Max. operating temp.
Appl. lin. exp. coef.
Gage factor
(sensing part only)

KHCM-10

KHCM-10-120-G15-11 C2MV
KHCM-10-120-G15-13 C2MV
KHCM-10-120-G15-16 C2MV
Uniaxial 2-element temperature-compensation type
Heat-resistant special alloy
10 mm 5 mm
$3(\mathrm{~W}) \times 20(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
$3(\mathrm{~W}) \times 10(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
Sheath tube and flange: Inconel 600 (equivalent to JIS NCF600)
Approx. 120Ω
1.6 mm by approx. 2 m long (std.) 1.0 mm by approx. 2 m long (std.) Inconel 600-sheathed 3-Cu-conductor cable
ETFE-coated 3-conductor shielded cable, 1.7 mm diameter by approx. 50 cm long
Approx. $650^{\circ} \mathrm{C}$ for both static and dynamic strains
$11,13,16 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ or user-specified
Approx. 2.0 at room temperature Approx. 1.5 at room temperature
Approx. 1.8 at $650^{\circ} \mathrm{C}$
Approx. 1.4 at $650^{\circ} \mathrm{C}$
The estimated curve is shown in the test data sheet.
25° to $650^{\circ} \mathrm{C}$
-196° to $650^{\circ} \mathrm{C}$
Within $\pm 10 \mu \mathrm{~m} / \mathrm{m} / \mathrm{h}\left(650^{\circ} \mathrm{C}\right) \quad$ Within $\pm 20 \mu \mathrm{~m} / \mathrm{m} / \mathrm{h}\left(650^{\circ} \mathrm{C}\right)$
$\pm 10000 \mu \mathrm{~m} / \mathrm{m}$ at $650^{\circ} \mathrm{C}$
1×10^{6} times at $650^{\circ} \mathrm{C}$ (with strain level $\pm 500 \mu \mathrm{~m} / \mathrm{m}$)
50 mA
20 mm

15 mm

- Model with no bridge adapter is also available.

Standard Accessories

- MI cable fixing metal belt (100 mm long, 2 pcs.) -Weld test metal piece (30 mm long, 2 pcs .) Test Data Sheet
Instruction Manual
The following resistors are additionally provided for models with no bridge adapter. - Temperature-compensation resistor Bridge balance resistor

Optional Accessories

- Bridge adapter

Compression fitting
Spot welder GW-3C (refer to page 15) For bridge adapter, compression fitting and MI cable length, refer to pages 13 and 14.

Typical Applications

Grasping the physical properties of:
Nuclear reactor peripherals
Nuclear reactor cooling water pipes (natrium)
High-speed bleeder reactors
Automotive exhaust manifolds
Automotive exhaust turbines, mufflers, valves, etc.

Precautions

- In the case of models with the bridge adapter pre-attached, leadwires of the bridge adapter can be connected directly to a static strain measuring instrument such as UCAM-60B, but the leadwires should be connected to a dynamic strain measuring instrument such as EDX-100A via an optional input cable.
Models with no bridge adapter pre-attached require an optional dedicated adapter.
Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

Static/Dynamic Strain Measurement High-temperature Encapsulated Weldable Strain Gages

SPECIFICATIONS

	KHC-20	KHC-10
for common steel	KHC-20-120-G8-11 C2MV	KHC-10-120-G8-11 C2MV
	KHC-20-120-G9-11 C2MV	KHC-10-120-G9-11 C2MV
for Inconel 600	KHC-20-120-G8-13 C2MV	KHC-10-120-G8-13 C2MV
	KHC-20-120-G9-13 C2MV	KHC-10-120-G9-13 C2MV
for stainless steel	KHC-20-120-G8-16 C2MV	KHC-10-120-G8-16 C2MV
	KHC-20-120-G9-16 C2MV	KHC-10-120-G9-16 C2MV
Gage type	Uniaxial 2-element temperature-compensation type	
Resistive element	Heat-resistant special alloy	
Sensing part $\frac{\text { Gage len }}{\text { Flange }}$ Material	20 mm	10 mm
	For the width and length, see the dimensional drawing above; $\mathrm{t}=0.1 \mathrm{~mm}$	
	G8 type: Both sheath tube and flange are made of Inconel 600 (JIS NCF600).	
	G9 type: Both sheath tube and flange are made of SUS 321.	
Gage resistance	Approx. 120Ω	
Leadwire cable $\frac{\text { Ml cable }}{\text { Soft cable }}$	1.6 mm diameter by approx. 2 m long (std.), Inconel 600 (G8) or SUS 347 (G9)	
	ETFE-coated 3-conductor shielded cable, 1.7 mm diameter by approx. 50 cm long	
Max. operating temp.	Approx. $550^{\circ} \mathrm{C}$ (dynamic strain), approx. $500^{\circ} \mathrm{C}$ (static strain)	
Appl. lin. exp. coefficient	11, $13,16 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ or user-specified	
Gage factor (sensing part only)	Approx. 1.9 at room temperature	Approx. 1.65 at room temperature
	Approx. 1.75 at $500^{\circ} \mathrm{C}$	Approx. 1.5 at $500^{\circ} \mathrm{C}$
Thermally-induced app. strain	The estimated curve is shown in the test data sheet.	
Temp. compensation range	25° to $500^{\circ} \mathrm{C}$	
Operating temp. range	-196° to $550^{\circ} \mathrm{C}$ (dynamic strain), -196° to $500^{\circ} \mathrm{C}$ (static strain)	
Drift	Within $\pm 20 \mu \mathrm{~m} / \mathrm{m} / \mathrm{h}\left(500^{\circ} \mathrm{C}\right)$	
Strain limit	$\pm 8000 \mu \mathrm{~m} / \mathrm{m}$ at room temperature	$\pm 5000 \mu \mathrm{~m} / \mathrm{m}$ at room temperature
Fatigue life	4×10^{5} times (with strain level $\pm 1000 \mu \mathrm{~m} / \mathrm{m}$) at room temperature	
Max. allowable current	30 mA	
Min. mountable curvature radius	25 mm	20 mm

Standard Accessories

- Ml cable fixing metal belt (100 mm long, 2 pcs .)

Weld test metal piece (30 mm long, 2 pcs.)

- Test Data Sheet
- Instruction Manual

The following resistors are additionally provided for models with no bridge adapter.
Temperature-compensation resistor

- Bridge balance resistor

Optional Accessories

- Bridge adapter
- Compression fitting

Spot welder GW-3C (refer to page 15)

- For bridge adapter, compression fitting and

Ml cable length, refer to pages 13 and 14 .

Typical Applications

Grasping the physical properties of:

- Nuclear fuel rods
- Boiler steam turbines
- Steelmaking furnace peripherals
- Automotive exhaust valves
- Nuclear power plant cooling pipes (pure
water)
- Gas turbine combustors
- Automotive cylinder heads
- Automotive pistons
- Heat-resistant alloys, etc.

Precautions

In the case of models with the bridge adapter pre-attached, leadwires of the bridge adapter can be connected directly to a static strain measuring instrument such as UCAM-60B, but the leadwires should be connected to a dynamic strain measuring instrument such as EDX-100A via an optional input cable.
Models with no bridge adapter pre-attached require an optional dedicated adapter.
Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

Static/Dynamic Strain Measurement Normal-temperature Encapsulated Weldable Strain Gages

For measurement outdoors, underwater or under highly humid conditions

The normal-temperature KCW is a weldable waterproof foil strain gage encapsulated in a stainless steel tube. The integrated structure consists of a completely molded sensing part and a polyethylenecoated crosslink cable featuring excellent environmental capability. The sensing part can be spot-welded to the measuring point. Compared with high-temperature encapsulated weldable gages, the normal-temperature model is affordably priced.

SPECIFICATIONS

Model	KCW-5-120-G10-11 G3M3S, quarter bridge 3-wire system for common steel
Gage type	Uniaxial 1-element
Resistive element	NiCr alloy
Sensing part	Gage length: 5 mm
	Flange: $5(\mathrm{~W}) \times 21(\mathrm{~L}) \mathrm{mm}, \mathrm{t}=0.1 \mathrm{~mm}$
	Sheath tube and flange: Stainless steel
Gage resistance	Approx. 120Ω
Leadwire cable	Polyethylene-coated 3-conductor crosslink cable, 3 mm diameter by 3
	m long (std.)

Max. operating temp. Approx. $100^{\circ} \mathrm{C}$ for both static and dynamic strains	
Appl. lin. exp. coef.	$11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Gage factor	Approx. 2.2
Temp. comp. range	10° to $90^{\circ} \mathrm{C}$
Operating temp. range	-20° to $100^{\circ} \mathrm{C}$
Strain limit	$\pm 5000 \mu \mathrm{~m} / \mathrm{m}$
Fatigue life	1×10^{6} times (with strain level $\pm 1000 \mu \mathrm{~m} / \mathrm{m}$)
Waterproof	Can endure approx. 10 MPa for 24 hours
Stability (Drift)	Within $\pm 100 \mu \mathrm{~m} / \mathrm{m} / 500 \mathrm{~h}$ ($80^{\circ} \mathrm{C}, 90 \%$ RH or higher, 1000 hours)
$/ 500 \mathrm{~h}$ (soaked condition, 1000 hours)	

Min. mountable curvature radius 20 mm
Pcs./pack
2

Typical Applications

Thermal power plant boiler pumps
Large-scale plant piping

- Underwater marine structures

Underwater tests of mirine reinforced structures - Automotive suction blowers - Car bodies

Standard Accessories

Ml cable fixing metal belt (100 mm long, 4 pcs .)
Weld test metal piece (30 mm long, 2 pcs .)
Test Data Sheet

- Instruction Manual

Optional Accessories

Bridge boxes DB-120A/L (refer to page 13)
Spot welder GW-3C (refer to page 15)

Cable Lengths and Codes

Leadwire cable length	Code
15 cm	G15C3S
30 cm	G30C3S
50 cm	G50C3S
1 m	G1M3S
2 m	G2M3S
3 m (std.)	G3M3S
4 m	G4M3S
5 m	G5M3S
6 m	G6M3S
7 m	G7M3S
8 m	G8M3S
9 m	G9M3S
10 m	G10M3S
15 m	G15M3S
20 m	G20M3S
25 m	G25M3S
30 m	G30M3S

- When ordering, specify the model number together with the code of the desired cable length, suffixed with a space in between.
Example: KCW-5-120-G10-11 G5M3S
for KCW with 5 m long polyethylene-coated crosslink 3-wire cable

Precautions

- Study the features of high-temperature encapsulated weldable strain gages (page 2) and follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

For Connection to Measuring Instrument Options

Bridge Boxes DB-120A/L

Designed to configure a Wheatstone bridge circuit with the KHCV or KCW connected.

- DB-120A

Cable: Chloroprene-coated, 5 m long, terminated with NDIS connector plug Dimensions: $60 \times 42 \times 25 \mathrm{~mm}$
Weight: Approx. 600 g (including cable)

DB-120L (Compact plug-in type)
Cable: Removable connection cable, 5 m long, terminated with NDIS connector plug Dimensions: $60 \times 20 \times 20 \mathrm{~mm}$ Weight: Approx. 60 g (main unit only)

KHCV Measuring Circuit

$10 \mathrm{k} \Omega$ resistor and $1,2.2$ and $10 \mu \mathrm{~F}$ capacitors are included in standard accessories to KHCV.

Half Bridge Adapter

Equipped with optimum temperature compensation resistors for the operating temperature range. When delivered, it is pre-attached to the soft cable to prevent erroneous wiring and ensures labor saving.

Quarter Bridge Adapter

Dedicated to the KHCV, this bridge adapter enables easy selection of the cutoff frequency (1.6, 7.23, 16 Hz or FLAT) as well as easy connection to the measuring instrument.

Compression Fitting

If required to fix the Ml cable, the compression fitting is pre-attached to the MI cable at the factory. When ordering, specify the direction.

MI Cable Length Codes and Optional Accessories

When ordering, specifiy the model number together with the code of the desired MI cable length, suffixed with a space in between. The suffix may include codes of the optional bridge adapter and compression fitting (see table at the right). In all cases, the length of the soft cable is 50 cm (for extension, contact us).

Examples

- KHCS-10-120-G12-11 C5M for KHCS with 5 m long MI cable
- KHCS-10-120-G12-11 C2MV

MI Cable Length	Code of MI Cable Length	Bridge Adapter Pre-attached 1	Compression Fitting Pre-attached (2)	(1)+(2)
1 m	C1M	C1MV	C1MF	C1MFV
$2 \mathrm{~m}($ Std. $)$	C2M	C2MV	C2MF	C2MFV
3 m	C3M	C3MV	C3MF	C3MFV
4 m	C4M	C4MV	C4MF	C4MFV
5 m	C5M	C5MV	C5MF	C5MFV
6 m	C6M	C6MV	C6MF	C6MFV
8 m	C8M	C8MV	C8MF	C8MFV
10 m	C1OM	C10MV	C1OMF	C1OMFV

for KHCS with 2 m long Ml cable and bridge adapter pre-attached

GW-3C

Compact Spot Welder for Encapsulated Weldable Strain Gages

Features

Welding current output is suitable for stainless steel, enabling welding of 0.3 mm thick stainless steel sheets.
The electrode is 1 mm diameter at both ends.
To enable optimum welding, energy is switchable between high and low ranges and is continuously variable in each range.
-An aluminum trunk is optionally available for transportation and storage.

SPECIFIGATIONS

Welding energy (COARSE)	LOW 0 to $25 \mathrm{~W} \cdot \mathrm{~s}$, contiuously variable (FINE 0 to 10)
	HIGH 0 to $50 \mathrm{~W} \cdot \mathrm{~s}$, contiuously variable (FINE 0 to 10)
Welding speed	$1 \mathrm{~W} \cdot \mathrm{~s} \quad 150$ times/minute
	$5 \mathrm{~W} \cdot \mathrm{~s} \quad 120$ times/minute
	$10 \mathrm{~W} \cdot \mathrm{~s} \quad 80$ times/minute
	$20 \mathrm{~W} \cdot \mathrm{~s} \quad 60$ times/minute
	$50 \mathrm{~W} \cdot \mathrm{~s} \quad 30$ times/minute
Operating temp. \& humidity ranges	0° to $40^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less
Storage temperature range	-10° to $60^{\circ} \mathrm{C}$
Power supply	AC line, $50 / 60 \mathrm{~Hz}, 500 \mathrm{VA}$ or less
Dimensions	$183(\mathrm{~W}) \times 153(\mathrm{H}) \times 313(\mathrm{D}) \mathrm{mm}$ (excluding protrusions)
Weight	$\mathrm{Approx} .8 .2 \mathrm{~kg}(\mathrm{mainframe)}$

DIMENSIONS

Standard Accessories

- Square welding head (with cable approx. 1.3 m long)
- Grounding clip (with cable approx. 1.3 m long)
- Electrode GW-02 - Metal file - Fuse (5 A) - Hexagon wrench - Instruction Manual

Optional Accessories

- Aluminum trunk GW-01

Precaution

Follow the instructions as described in "To Ensure Safe Usage of Encapsulated Weldable Strain Gages" (page 16).

Stainless Steel Sheet Thickness and
FINE Control Setting Reference Values

Stainless Steel Sheet Thickness (mm)	COARSE Range		Welding Energy (W•s)
	LOW	HIGH	
	FINE Control		
0.1	2	1	5
0.2	6	3	15
0.3	-	6	30

Welding Capability

Precaution: It is not possible to perform welding for a continuous 4 minutes or longer at 1-second intervals with FINE control set at 5 in HIGH range or for a continuous 10 minutes or longer at 1 -second intervals with FINE control set at 10 in LOW range.

To Ensure Safe Usage of

Encapsulated Weldable Strain Gages

- Be sure to read the instruction manual before use.
- Encapsulated weldable strain gages are designed to be mounted to the measuring object by spot-welding. Thus, they can be mounted to ferrous materials but not to aluminum, copper, ceramic or the like.
- Surface treatment: Remove rust and paint from the surface of the measuring point by polishing with sandpaper (\#320, etc.). Wipe away dirt and oil with a solvent such as acetone. While the flange is cleaned by sand-blasting at the factory, degrease it with acetone or the like as required.
- Be sure not to cut the MI cable or make any hole on it. The insulating material filled in the cable may absorb moisture through a hole, thereby disabling measurement.
- To prevent the sensing part from any damage due to tension or twisting caused by the weight or handling of the MI cable, fix the connection between the sensing part and MI cable, and the MI cable at proper intervals using accessory metal belts. Then, spot-weld the flange. (Fig. 1)

Fixing connection (1) or MI cable
Fig. 1

- Spot-welding the flange: It is recommended to use KYOWA GW-3C spot welder (see page 15). At first, temporarily fix the center of the flange at the left and right. Then, spot-weld the flange in the order shown below. Standard welding conditions are: tip of electrode 0.8 mm diameter, welding energy approx. $10 \mathrm{~W} \cdot \mathrm{~s}$ and electrode pressing force approx. 10 N.

Fig. 2

Note:
In the case of KHCV, KHCR or KHCM-5, spot-weld the tip at the center too. (Fig. 3)

Temporarily fix the flange at the center and then spot-weld it in order of (1) to (5).

- For KHCV, KHCR and KHCM-5 only

Fig. 3

- Spot-welding the flange to a curved surface: Press the flange against a pipe or the like having the same curvature as the mounting surface so that the flange is given the same curvature as the mounting surface. Then, spot-weld. (Fig. 4) If the curvature radius and curved direction are specified when ordering, the gage will be delivered with the specified shape.

Fig. 4

- For the temperature compensation method, refer to "Temperature Compensation Method and Bridge Circuit (KHCX, KHCR, KHCS. KHCM, KHC)," page 3.

Fill in the form below when inquiring or ordering.

Company/Institute Name	
Address	
Section/Department	E-mail
Name Fax	
Phone	

(1) Measurement purpose	
(2) Type of strain	\square Static strain $\quad \square$ Dynamic strain (Hz)
(3) Strain quantity	\square Approx. $\quad \mu \mathrm{m} / \mathrm{m} \quad \square$ Unclear
(4) Operating temperature range	to $\quad{ }^{\circ} \mathrm{C}$, number of cycles: to ${ }^{\circ} \mathrm{C}$, hours:
(5) Length of high-temp. exposed cable	$\square \quad \mathrm{m}$, required length of MI cable: m
(6) Length of room-temp. exposed cable	$\square \quad \mathrm{m}$, required length of soft cable: m
(7) Environment	 e.g. gaseous atmosphere, under seawater, etc.
(8) Removing from pressure vessel, etc.	Yes No Compression fitting pre-attached model is desired. Direction: Inside Outside
(9) Measuring object material	\square (In the case of special material, write the composition.)
(10) Requirements for heat treatment of measuring object	\square
(11) Linear expansion coefficient of measuring object	If it can be shown in an equation: Function (approximate value) related with temperature T Equation: $f(T)=$ At room temperature $\quad{ }^{\circ} \mathrm{C}\left(\quad \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ At high temperature ${ }^{\circ} \mathrm{C}\left(\quad \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ Unclear
(12) Mounting space	$\square \quad \mathrm{x} \quad \mathrm{mm}$
(13) Curvaturre of mounting surface	\square Flat \square Inside of R mm \square Outside of R mm
(14) Desired gage length	$\square 5 \mathrm{~mm} \quad \square 10 \mathrm{~mm} \quad \square 20 \mathrm{~mm} \quad \square$ None
(15) Desired model	\square
(16) Adapter	\square Bridge adapter pre-attached model is desired.
(17) Estimated apparent strain and gage factor	Wish to have the Test Data Sheet accompanying the estimated data (gage factor only for KHCV). Wish to have the actual measurement data.
(18) Measuring system	\square Encapsulated gage - Bridge adapter - $^{\text {(Amplifier) }}$ Logger) $^{(1)}$
(19) Spot welder	\square Possess $\quad \square$ Wish to purchase $\quad \square$ Wish to rent
(20) KYOWA representative	

Specifications are subject to change without notice for improvement.

Be sure to observe the safety precautions given in the instruction manual, in order to ensure correct and safe operation.

Reliability through integration

TIKYOWA

KYOWA ELECTRONIC INSTRUMENTS CO., LTD.

Overseas Department:

3-5-1, Chofugaoka, Chofu, Tokyo 182-8520, Japan
Phone: +81-42-489-7220 Facsimile: +81-42-488-1122
http://www.kyowa-ei.com
e-mail: overseas@kyowa-ei.co.jp

